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Abstract—Modeling the activity of an ensemble of neurons
can provide critical insights into the workings of the brain.
In this work we examine if learning based signal modeling
can contribute to a high quality modeling of neuronal signal
data. To that end, we employ the sparse coding and dictio-
nary learning schemes for capturing the behavior of neuronal
responses into a small number of representative prototypical
signals. Performance is measured by the reconstruction quality
of clean and noisy test signals, which serves as an indicator
of the generalization and discrimination capabilities of the
learned dictionaries. To validate the merits of the proposed
approach, a novel dataset of the actual recordings from 183
neurons from the primary visual cortex of a mouse in early
postnatal development was developed and investigated. The
results demonstrate that high quality modeling of testing data
can be achieved from a small number of training examples
and that the learned dictionaries exhibit significant specificity
when introducing noise.

1. Introduction

Neurons are the elementary processing units in the cen-
tral nervous system and are connected to each other in
intricate patterns. Neuronal signals consist of short electrical
pulses, termed action potentials or spikes, which form the
elementary signals for transmission [1]. A chain of action
potentials, generated by a single neuron is called a spike
train and is a time sequence of firing events, which occur at
regular or irregular intervals. Thus, these pulse-coded signals
that represent the information encoded by a neuron, employ
both binary and temporal coding mechanisms, which expand
the signals into higher dimensional spaces [2].

Visual information relayed from the retina to the primary
visual cortex (V1) is encoded in real time via the joint firing
of multiple neurons. Although much has been learned about
the properties of single neuronal units, the rules by which
neurons coordinate their activity in cortical networks to
represent information about the visual stimulus remains one
of the fundamental unanswered questions in neuroscience
[3]. To understand why, one needs only to consider that
responses of single units are both noisy and ambiguous,

that is responses to the same stimulus vary considerably
and responses to multiple different stimuli can be the same.

The high dimensionality of the observations introduces
a challenge in terms of signal analysis. The curse of di-
mensionality is an indicative example of such challenge. In
order to capture only the significant information encoded
in the high-dimensional spaces, dimensionality reduction
methods can be applied [4]. Despite the benefits of tradi-
tional approaches like PCA, the majority of methods are
unable to include prior knowledge through learning of the
underlying signals statistics. The objective of this work is to
explore to what extent it is possible to reduce the ambient
dimensionality of multiple neuron activation patterns to
the effective dimension of the underlying process without
significant penalty in the subsequent data analysis.
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Figure 1: The proposed dictionary learning framework for
neuronal signal modeling. (1) Data is acquired. (2) Action
potentials are transformed to binary values. (3) Data is rep-
resented in matrix format. (4) Dictionary learning is applied
on the training data. (5) Testing examples are represented
by a linear combination of a few dictionary elements. (6)
Reconstruction error is quantified.

To address this challenge, we propose modeling the
neural activation data as an instance of a sparse coding and
dictionary learning problem [5], [6]. A visual illustration of
the data analysis chain is shown in Figure 1, which depicts
how dictionaries that learned directly from the observations



can be employed to represent neuronal binary signals as
linear combination of a small number of prototypical signals
called atoms. Although sparsity seeking dictionary learning
methods have achieved great success in modeling complex
signals from images [7] to wireless sensor network [8] data,
no such approach has been considered for handling the
intricacy of the multiple neuron activation patterns modeling
considered in this work.
This work includes the following innovative aspects:

o The application of sparsity modeling and dictionary
learning on neural network data.

o The evaluation of the generalization capacity of spar-
sifying dictionary learning.

o The evaluation on sensitivity of the learned dictio-
nary with respect to noise.

2. Proposed modeling approach

The working hypothesis in this work is that neuron
activation patterns can be efficiently represented as linear
combinations of a small number of prototypical patterns of
activity called atoms. Each data point, corresponding to the
activation pattern of a set of neurons during a small temporal
time unit, can thus be represented through a sparse vector
of coefficients, (i.e. sparse coding process). Furthermore, the
collection of atoms, called dictionary, can be either explicitly
modeled or, in case when no such models exist, it can be
learned from a set of training data through a dictionary learn-
ing process. Here, we apply the K-SVD dictionary learning
algorithm [9] on a real dataset to quantify the quality of
reconstruction of sparse low-dimensional representation.

Formally, according to the sparse representation frame-
work, given a dictionary D that contains K prototype signal-
atoms for columns and an input signal y € R, we search
for a vector x that optimizes a certain sparsity level. An ap-
proach to this problem is the minimization of the following
lp norm problem:

rr)l(i_n |y — Dx;||3 subject to ||xs]lo < To (D)

where ||x;||o is the [y pseudo-norm which counts the number
of non-zeros elements. T is the sparsity level which denotes
the number of nonzero elements for every x;, namely for
every column 7 of sparse coefficient vector x.

An important issue regarding the formulation in Eq.(1) is
that the [y minimization is an NP-hard problem and therefore
inefficient to solve for even moderate sized problems. To
address this issue, greedy approaches, such as the OMP
[10] algorithm, have been proposed. OMP greedily tries
to identify the elements that contain most of the signal
energy by iteratively selecting the dictionary element that
best matches the signal by projecting the input signal to
the linear span of the selected elements and estimating the
residual error until an acceptable approximation limit or a
maximum number of iterations is reached.

Eq.(1) assumes that a dictionary D is available, which
is the case when assumptions regarding the characteris-
tics of the signals are made. To handle the intricacy of

modeling multiple neural activities, we employ K-SVD, a
dictionary learning algorithm [9] designed for maximizing
signal reconstruction quality subject to sparsity constraints.
In the sparse representation problem, each input signal is
represented by a linear combination of a small number of
dictionary elements. Formally, let Y C RM denote the set
of training signals of interest, e.g. a neuronal signal. Given
[¥1,.,¥N] € Y, the first stage of dictionary learning is to
learn a dictionary D C R¥, by finding a set of signals, the
atoms, D = [dy,...,dk]. that form the buildings blocks
of Y. An input signal y € Y can then be represented
by a linear combination of a small number of atoms, i.e.
y; = Dx; + E where E captures the contribution of noise
due to modeling.

The training phase of K-SVD involves searching for the
best dictionary that will support the sparse representation of
the testing set Y by minimizing the error E. Depending on
the particular application, desired accuracy and nature of the
signals, dictionary learning may take different forms. Yet is
often formulated as a least squares optimization of the form:

min Y — DX||3 subject to || X;llo < Tp Vi.  (2)

where ||.||r denotes the frobenius norm of a matrix. The
coefficient matrix X has thus 7 nonzero entries in every
column ¢ and these can have arbitrary values.

In K-SVD, the expression in (2) is iteratively minimized
and each iteration includes two steps. First, the dictionary D
is assumed to be fixed and the goal is to find the optimal co-
efficient matrix X. As finding the optimal X is an NP-hard
problem, the OMP method is used for the sparse coding.
Once the sparse coding task is completed, the dictionary is
updated one column at a time. Specifically to update column
dy, all other columns in D are fixed and the atom is updated
such that it minimizes the representation error, through a
singular value decomposition. The algorithm repeats these
two steps until reaching the stopping conditions based on
a threshold in the number of iterations or a representation
error. To account for the fact that the reconstruction can
produce real-valued signals, a hard thresholding to either 0
or 1 is performed in this work.

3. Evaluation

3.1. Dataset Collection

To evalute the merits of the proposed modeling ap-
proach, a novel dataset consisting of true measurements
is employed. Data was collected using two-photon calcium
imaging in the neocortex of a 9-day old mouse (C57BL/6).
Simultaneously 183 layer 2/3 neurons were imaged using
calcium indicator OGB-1 (imaging depth 130 microns from
pia). 29 minutes of spontaneous activity were recorded,
comprised of 11K, i.e. 11000 frames, each of 0.1451 sec
duration. The raw fluorescence movie was motion-corrected
to remove slow xy-plane drift. After motion correction, we
used ImageJ software [11] to draw the ROIs of cells around
cell body centers, staying 12 pixels from the margin of



a cell to avoid contamination with neuropil signals. We
then averaged the signals of cell ROI pixels and converted
them to dF/F [12]. To determine the onsets of spontaneous
calcium responses, the dF/F timecourse for each cell was
thresholded, using the noise portion of the data, to 3 standard
deviations above noise. To make a binary eventogramme of
the responses, for each cell the frames containing the onsets
for this particular cell were assigned the value 1, and all
other frames were assigned the value 0. The resulting binary
eventogramme of all cells was used in subsequent analysis.

3.2. Evaluation metrics

In this section we report the performance of the dic-
tionary learning algorithm on the modeling of neuronal
signals. To assess the performance of K-SVD in neuronal
signal reconstruction, we explore the impact of the following
parameters: (i) dictionary size, i.e., the number of elements
considered in the dictionary, (ii) the sparsity level, i.e.,
the number of atoms used for representation, and (iii) the
training size used for dictionary learning.

The analysis aims to examine if a good reconstruction
can be achieved via a trained dictionary. For that, it selects a
random signal of size 2K, 3K, and 4K (out of the entire 11K)
for training (training time instances) and employs 5K testing
signals. The random selection of the signals in the training
and test sets, allows us to introduce invariance with respect
to temporal correlations and focus on the synchronicity of
the neurons activity. For a test set consisting of 5K instances,
the total number of events for the 183 neurons is 915K.

For the following figures each point corresponds to
mean performance over ten realizations randomly splitting
the dataset into training and testing sets, while the error
bar demonstrates the standard deviation. Without loss of
generality we make the following simplification: The re-
constructed events are mainly {0,1} but because of the
fact that we deal with a reconstruction problem, sometimes
arbitrary reconstructed values that are neither O nor 1 appear
in small numbers. Thus, to make the outputs of the dictio-
nary modeling process binary, values greater than 0.5 are
considered activations, while the rest as not. Future work
will explore potential modification of sparse coding and
dictionary learning to the purely binary regime.

3.3. Evaluation of signal modeling

Fig. 2 illustrates the performance of K-SVD as a func-
tion of the dictionary size for three different training set
sizes. In this figure where the sparsity level is fixed to 4
(i.e. the sparse coefficient matrix X has at most 4 non-zero
entries in every column), we observe that the total number
of misclassified events comes at maximum up to 2K, which
is dramatically smaller compared to the 915K total events,
in the order of 0.2%.

The results demonstrate that increasing the number of
examples has a positive effect on the system’s learning
ability until a dictionary size of 250 atoms is used. In-
creasing the dictionary size up to 250, the reconstruction
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Figure 2: Total number of misclassified events with respect
to dictionary size for sparsity level 4

error becomes significantly smaller, which is an expected
behavior as there is a wider variety of dictionary atoms and
the system selects those ones that will better approach the
original test signal. However, increasing the dictionary size
more than 250 dictionary elements causes the reconstruction
error to increase. This can be attributed to overfitting of the
system due to the increased dictionary size, in combination
with the hard sparsity constraints.

For sufficient sparsity however, one expects that in-
creasing the dictionary size would have a positive effect
on the reconstruction quality. This is indeed confirmed by
Fig. 3, where sparsity level is increased to 20. The results
demonstrate that the overall number of misclassified events
is smaller compared to lower sparsity levels, while the error
is monotonically decreasing with increased dictionary size.
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Figure 3: Number of misclassified events with respect to
dictionary size for sparsity level 20

The behavior demonstrates that by increasing the spar-
sity level, namely the non-zero entries in every column
of coefficient matrix X, the system has higher flexibil-
ity in modeling complicated high dimensional signals and
achieves better generalization capacity. Similar to the case
in Fig 2, increasing the number of training signals leads to
better performance.

A natural question to ask is whether the number of
misclassified events will keep decreasing if we increase the
sparsity level. To answer this question, the sparsity level was
increased to 50 and the results are shown in Fig. 4.

The results suggest that the number of misclassified
events increased compared to Fig. 3. One possible expla-
nation for the behavior is that by increasing the sparsity
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Figure 4: Number of misclassified events with respect to
dictionary size for sparsity level 50

level, the system exhibits signs of overfitting, which limits
its generalization ability for modeling new test signals.
Additionally, we notice that the number of training examples
does not affect the reconstruction error. A key observation
from these results is that it is possible to achieve a good
reconstruction quality, and thus modeling capability, with a
relatively small number of training examples.

Given the fact that firing events occupy only the 0.36%
of the whole dataset and the rest of the events are zeros, a
critical question is if our system can detect and reconstruct
the firing events. In order to examine this, we report a
confusion matrix in Table 1, where we examined the case
of training the system with 2K and 4K signals for sparsity
levels 4, 20 and 50, while performance is reported on 5K
testing signals.

Table 1. Confusion Matrix of Reconstructed Events

Training Examples 2000 4000

Sparsity Acmalpmdim 0 1 0 1
0 911523 162 911685 0

4 1 1953 1362 1546 1769
o 0 911663 22 911674 11

1 652 2663 613 2702
0 911526 159 911668 17

>0 1 1082 2233 1751 1564

The worst performance in terms of reconstructed events
occurs when we use 2K (the smallest) number of training
examples combined to a hard sparsity constraint, namely
with sparsity level 4. In contrast to this, the best results are
obtained when the number of training examples is increased
to 4K with sparsity level 20, where we observe an important
improvement in the reconstruction of aces. Finally, for spar-
sity level 50 the system exhibits signs of poor generalization
indicated by worse performance compared to sparsity level
20, justifying to an extent the applicability of sparsity as a
modeling constraint.

3.4. Evaluation of sensitivity in modeling noisy test
signals

In this experiment, we explore the ability of the learned
dictionary to discriminate true patterns from noisy signals.
Similar to the previous section, the dictionaries are trained
using noise-free examples, while the performance in recon-
struction is evaluated when noisy examples are sparsely rep-
resented in the learned dictionaries. For all of the following
experiments the training examples are set to 3K and the test
examples to 5K, while the sparsity level is set to 20 based
on the observed behavior in the previous experiments.

We examine three cases in the number of noisy neuronal
signals by adding noise to 10, 80 and 183 neuronal signals
out of the 183 in total. To create noisy neuronal signals, we
randomly select a subset of neurons and randomly change a
number of events for each neuron from firing to non-firing,
namely 0 values are turned into 1 values and vice versa. This
type of noise is quite intense, since the independence of the
noisy signals completely changes the characteristics of the
noise-free test signals. The objective of this experiment, is
to quantify the extent to which the learned dictionaries truly
encode neuronal activities or simply model random binary
noise. In order to verify the learning ability of the K-SVD,
we expect to see significant increases in reconstruction error
when noise starts dominating the clear signal.

To evaluate the reconstruction error in the experiments
that correspond to Fig. 5 and 6, we compare the noise-free
test signals with the reconstructed test signals for dictionary
sizes 200 and 400 respectively, in terms of number of
noise-afflicted neurons. The O value in the horizontal axes
corresponds to the noise-free case, namely the reconstruction
is based on clean test signal (0 flipped events)
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Figure 5: Number of misclassified events as a function of
the number of flipped events, for dictionary size 200.

In Fig. 5 one can observe that there is a monotonic in-
crease in the number of misclassified events with increasing
number of erroneous events. This behavior demonstrates that
the learned dictionary was able to capture the underlying
statistics of the true signals and does not simply model ran-
dom noise. Furthermore, introducing noise in more neurons
has a direct impact on the ability of the learned dictionary
to represent such signal ensembles.

Similar behavior is observed for larger dictionaries as
shown in Fig. 6. An increase in dictionary size favors the
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Figure 6: Number of misclassified events as a function of
the number of flipped events, for dictionary size 400.

learning capacity of the system, and since the underlying
distribution changes due to the noise, it becomes more
challenging for the system to reconstruct the observations.
This is manifested by the increased reconstruction error.

Fig. 7 demonstrates the performance of K-SVD in terms
of the number of flipped events but in this case, we compare
the noisy test signals with the reconstructed test signal.
Specifically, while in Fig. 5 we explore if the modeling
process can separate the noise from the signal, in Fig. 7
we examine the degree to which the trained dictionary is
specific to representing the original (neural) data, as opposed
to the randomly degraded noisy patterns we introduced.
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Figure 7: Differences in events between noisy test signals
and reconstructions, for dictionary size 200.

Similar to the results in Fig. 5, increasing either the num-
ber of noisy neurons or the number of erroneous events leads
to higher reconstruction error. Furthermore, we observe that
as we increase the amount of noise, this leads to an expo-
nential increase in the error, which doesn’t occur in the case
of Fig. 5, in which we observe a more robust estimation of
the noise-free signal in the presence of increased noise. The
behavior demonstrated in these experimental results suggest
that increasing the amount of noise has a profound impact
on the reconstruction quality, thus the learned dictionary
effectively captures the underlying signal characteristics.

4. Conclusion

In this work we have investigated the possibility of
representing neuronal signals in low-dimensional subspaces

via dictionary learning. In order to achieve this, we used
the dictionary learning algorithm K-SVD. The fundamental
idea is that a set of neuronal signals can be represented
as a linear combination of a few basic elements learned
directly from the data. Extensive experimental results show
the efficacy of the algorithm in representing such signals
in low-dimensional subspaces, maintaining their structure
(e.g. synchronicity of firing events) and simultaneously pre-
serving only the necessary information needed for research
analysis. The experimental results over neuronal ensemble
signal reconstruction were very encouraging, which suggests
that further research is necessary.
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