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Short Abstract: 35 

It is important to obtain unbiased estimates of visual population receptive fields 36 

(pRFs) by functional magnetic resonance imaging. We use mild regularization 37 

constraints to estimate pRF topography without a-priori assumptions about pRF 38 
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shape, allowing us to choose specific pRF models post-hoc. This is particularly 39 

advantageous in subjects with visual-pathway lesions. 40 

 41 

Long Abstract: 42 

Visual cortex is retinotopically organized so that neighboring populations of cells map 43 

to neighboring parts of the visual field. Functional magnetic resonance imaging 44 

allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of 45 

the visual field that activates the cells within each voxel. Prior, direct, pRF estimation 46 

methods1 suffer from certain limitations: 1) the pRF model is chosen a-priori and may 47 

not fully capture the actual pRF shape, and 2) pRF centers are prone to 48 

mislocalization near the border of the stimulus space. Here a new topographical pRF 49 

estimation method2 is proposed that largely circumvents these limitations. A linear 50 

model is used to predict the Blood Oxygen Level-Dependent (BOLD) signal by 51 

convolving the linear response of the pRF to the visual stimulus with the canonical 52 

hemodynamic response function. PRF topography is represented as a weight vector 53 

whose components represent the strength of the aggregate response of voxel 54 

neurons to stimuli presented at different visual field locations. The resulting linear 55 

equations can be solved for the pRF weight vector using ridge regression3, yielding 56 

the pRF topography. A pRF model that is matched to the estimated topography can 57 

then be chosen post-hoc, thereby improving the estimates of pRF parameters such 58 

as pRF-center location, pRF orientation, size e.t.c. Having the pRF topography 59 

available also allows the visual verification of pRF parameter estimates allowing the 60 

extraction of various pRF properties without having to make a-priori assumptions 61 

about the pRF structure. This approach promises to be particularly useful for 62 

investigating the pRF organization of patients with disorders of the visual system.  63 

 64 

Introduction  65 

Functional magnetic resonance imaging (fMRI) measures non-invasively the 66 

functional organization of visual cortex at a macroscopic scale (typically on the order 67 

of millimeters). Early fMRI retinotopy studies used a coherence measure between 68 

stimulus location and elicited BOLD responses4-7. These studies typically did not 69 

estimate population receptive field size. Later, Dumoulin and Wandell1 proposed a 70 

method to overcome such a limitation by explicitly modeling the pRF location and 71 

size, using a linear function of this model to predict the BOLD response. However, 72 

one limitation of this pioneering method is that the parametric pRF model has to be 73 

chosen a-priori, and may lead to erroneous pRF estimates if it turns out not to be 74 

appropriate.  75 

To overcome limitations of the parametric pRF-model method, new methods have 76 
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been developed recently. These methods directly predict the BOLD response to the 77 

stimulus by reconstructing the pRF topography. A method8 proposed by Greene and 78 

colleagues reconstructs the pRF topography by back-projecting the BOLD responses 79 

to the individual 1D stimulus spaces and building the pRF topography in the 2D 80 

stimulus space like a typical computer tomography technique. On the other hand, the 81 

method2 proposed by us directly estimates the 2D pRF topography by using linear 82 

regression and applying a regularization technique. In this method, the pRF 83 

topography is represented as a set of weights which is multiplied by the stimulus to 84 

estimate the neuronal population response of a given voxel. Then, the final Blood 85 

Oxygen Level-Dependent (BOLD) response evoked by the stimulus is estimated by 86 

convolving the neuronal population response and the canonical hemodynamic 87 

response function. In order to solve the under-constrained linear system, additionally, 88 

ridge regression regularization is used to enforce sparseness (see Figure 1 below). 89 

The regularization technique suppresses noise and artifacts and thus allows our 90 

method to estimate the pRF topography more robustly.  91 

 92 

The topographical methods do not force the pRF shape to have a certain parametric 93 

shape, and therefore can uncover the actual pRF structure. An appropriate 94 

parametric model can then be chosen based on the pRF topography. For example, 95 

the pRF topography can be used to separate the pRF center and surround, and then 96 

the subsequent pRF center modeling can be more accurate by minimizing the 97 

influence of surround suppression as well as the influence of other potential artifacts 98 

arising in areas distant to the pRF center. We have recently performed a quantitative 99 

comparison between our method and several other methods that directly (i.e. before 100 

estimating the topography) fit isotropic Gaussian1, anisotropic Gaussian, and 101 

difference of isotropic Gaussians to the pRF9. It was found that the topography-102 

based method outperformed these methods with respect to pRF center modeling by 103 

achieving higher explained variance of the BOLD signal time series.  104 

 105 

Accurate estimation of pRF properties in various areas reveals how they cover the 106 

visual field and is important for investigating the functional organization of the visual 107 

cortex particularly as it relates to visual perception. Properties such as how pRF size 108 

changes with eccentricity1,10 and pRF center surround organization9 are well studied 109 

in the human literature. The proposed method for estimating the pRF topography 110 

results in more accurate pRF parameter modelling and is more likely to reveal 111 

unknown regularities, not easily modeled a-priori in the direct parametric models. 112 

This approach will be especially suitable for studying pRF organization in patients 113 

with visual pathway lesions, for whom pRF structure is not necessarily predictable a-114 
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priori. Below is described how to estimate the pRF topography and how to use the 115 

topography to model the pRF center. 116 

 117 

Protocol 118 

1. Data acquisition 119 

 120 

1.1) Prepare a stimulus protocol that is effective in eliciting a reliable retinotopic 121 

visual response as previously described in Dumoulin and Wandell1 and Lee et al.2. 122 

However, other well established paradigms are also applicable depending on the 123 

specific experimental question to be addressed.  124 

 125 

1.2) Present bar stimuli drifting across the screen sequentially along 8 directions 126 

of space, in steps of 45 degrees. Ensure that the motion is in synchrony with scanner 127 

frame acquisition (TR~2sec) so that the bar moves a step once an fMRI frame starts 128 

and stays at the new location until the frame ends.  129 

 130 

1.3) To measure a correct baseline signal, add epochs without bar stimulation1. 131 

 132 

1.4)1. Define a field of view (10 to 15 degrees radius) in visual angle over which the 133 

stimulus is presented. Present moving or flickering checkerboard patterns (checker 134 

size = 0.94x0.94 deg2, pattern update rate = 250 msec/pattern) within the bar to elicit 135 

strong visual responses.  136 

 137 

1.4)2. Input the following specific parameters: 8 evenly spaced directions of motion, 138 

bar width equal to 1.875 deg, and bars move by half the bar width per frame (2 sec). 139 

Additional details can be found in Lee et al.2. 140 

 141 

1.4)3. Generate a spot (~0.25°) in the screen center on which the subject’s eyes 142 

fixate during the experiment. Change color of the spot randomly in time. 143 

 144 

1.5) Scan the brain of a subject in an MRI scanner using a typical echo-planar-145 

imaging (EPI) scan that has 192 frames duration (24 frames in each direction of 146 

motion). Repeat the scans 4-8 times to increase signal-to-noise ratio. 147 

 148 

1.6) Set parameters for the EPI sequence as follows: TR = 2sec, TE=40ms, 149 

matrix size = 64 x 64, 28 slices, voxel size = 3 x 3 x 3 mm3, flip angle = 90deg., 150 

Alternatively, apply sequences with a finer resolution (e.g., 2 x 2 x 2 mm3) or a short 151 

TR (e.g., 1~1.5 sec) covering only the visual cortex2. 152 
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 153 

1.7) Track eye movements with an eyetracker system during functional scans to 154 

ensure fixation is maintained to within 1-1.5° of the fixation point. Note: Here, a head-155 

coordinate based eyetracker in a goggle system is used, but other suitable 156 

eyetracker systems can be used instead.  157 

 158 

1.8) Instruct the subjects to fixate the spot on the screen center generated in step 159 

1.3.2. To ensure the subjects are fixating, instruct them to report the color changes of 160 

the fixation spot.  161 

 162 

1.9) Obtain anatomical scans, at 1x1x1 mm3 resolution (e.g., T1-MPRAGE; 163 

TR=1900ms, TE=2.26ms, TI=900ms, flip angle = 9deg, 176 partitions). Note: These 164 

anatomical scans will be used for segmentation as well as for aligning the functional 165 

images to the anatomy both within and across scans. For better alignment between 166 

functional (EPI) images and the anatomy, obtain also an inplane anatomy scan, with 167 

resolution identical to the EPI, using T1-weighted fast spoiled gradient echo (SPGR) 168 

sequence1.  169 

 170 

2. Data pre-processing  171 

 172 

Note: Prior to estimating pRF properties, several typical fMRI data pre-processing 173 

steps are needed, such as head motion correction and alignment of functional 174 

volumes to the anatomical scan. In this article, all pre-processing, estimation, 175 

analysis and presentation of results obtained are performed using the open source 176 

MATLAB-based software toolbox VISTA LAB available on the VISTA software site. 177 

http://white.stanford.edu/newlm/index.php/Main_Page. 178 

 179 

2.1) Load the anatomical scan into MATLAB and prepare a volume anatomy 180 

using a function called createVolAnat.  181 

 182 

2.2) Segment Gray matter, White matter, and CSF using the function “ItkGray”. 183 

 184 

2.3) Prepare functional data by converting DICOM (i.e., raw MRI file format for 185 

Siemens) files into NIFTI (i.e., standard functional MRI file format) files, and load 186 

data into VISTA using a function called mrInit. 187 

 188 

2.4) Correct head-motion and align functional images to the anatomy loaded in 189 

step 2.1 using rxAlign based on an affine matrix transformation. 190 
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 191 

2.5) Average functional motion-corrected scans for improving signal-to-noise ratio 192 

by clicking mrVISTA  Analysis  TimeSeries  Average tSeries. Exclude from 193 

averaging scans during which eye movements deviates from fixation more than 1-194 

1.5°. If signals from different runs have different dc-drifts, average functional scans 195 

after removing the dc-drifts. 196 

 197 

2.6) Calculate the mapping coordinates between functional scans and Gray 198 

matter and identify corresponding Gray-matter voxels in the functional scans by 199 

selecting the following menus: mrVISTA  Window  Open Gray 3-View Window. 200 

Assign BOLD signals in the Gray matter voxels by interpolation, choosing one of the 201 

options available in mrVISTA. 202 

 203 

3. Estimation of pRF topography and parametric modeling 204 

 205 

3.1) Download the code files through the following link 206 

https://sites.google.com/site/leesangkyun/prf/codes.zip, extract the 207 

compressed file and place them in a preferred location of the local computer. Add 208 

the path of the folder in MATLAB. 209 

 210 

3.2) Set the stimulus parameters used in the experiment by selecting the following 211 

menus: mrVISTA  Analysis  Retinotopic Model  Set Parameters. Specify the 212 

following parameters such as stimulus images, the stimulus size, the canonical 213 

hemodynamic function, the frame rate of the fMRI scanner.  214 

 215 

3.3) Prior to the pRF estimation, prepare the initial parameter sets (Figure 1B).  216 

 217 

3.3.1) Set the cross-validation sets in “tprf_set_params.m” from the code files. Divide 218 

timeseries into at least two subsets (one set for testing and the remaining sets for 219 

training) that are long enough for the bar to sweep the entire stimulus space. 220 

Alternatively, without averaging scans in step 2.4, validate scans by leaving out one 221 

scan for testing and using the remaining scans for training.  222 

 223 

3.3.2) Set a coarse parameter set (λ in Figure 1; λ = [10-2 10-1 1 101 102]) in 224 

“tprf_set_params.m”. Then, set a fine scale range ([0.1 0.3 0.5 0.7 0.9 1 3 5 7 9]) in 225 

“tprf_set_params.m”.  226 

 227 

Note: The program uses the coarse set to select the λ resulting in the highest 228 
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explained variance. Then, the program searches the space around the selected λ 229 

using the fine scale range, further refining the selection of λ that yields the highest 230 

explained variance.  231 

 232 

3.3.3) Set a threshold (0.2) of the explained variance for visually responsive voxels in 233 

“tprf_set_params.m”. Note: This threshold is used as the reference for selection of 234 

visually responsive voxels. Alternatively, make an ROI for a non-visually responsive 235 

region (e.g., by drawing a sphere with a radius of 1cm in a non-visually responsive 236 

brain area), where the threshold can be automatically calculated. 237 

 238 

3.3.4) Set a set of thresholds ([0.3, 0.5, 0.7]) for defining the pRF center region in the 239 

normalized topography in “tprf_set_params.m” (i.e., [0 to 1] or [-1 to 1] with epochs 240 

without bar stimulation in step 1.1.1).  241 

 242 

Note: From the set of thresholds the program provided selects the “best” threshold, 243 

i.e. the threshold that defines a pRF central region for which the pRF center model 244 

explains the greatest signal variance. Alternatively, choose a different set of 245 

threshold values depending on the characteristics of the topography.  246 

 247 

3.4) Execute “tprf_runpRFest.m” from Supplemental Code Files to calculate the pRF 248 

topography (Figure 1) and fit a 2D anisotropic Gaussian. After specifying all 249 

parameters described in this protocol, and running the code, obtain the final 250 

estimation results. 251 

 252 

[Figure 1 here] 253 

 254 

Representative Results: 255 

Accurate pRF modeling requires capturing pRF shapes correctly. Without knowing 256 

the pRF topography, the selection of circularly symmetric models used in prior 257 

studies1,9-11 is a reasonable choice. This is because, if the local retinotopic 258 

organization is homogeneous in all directions of visual field, a local population 259 

response could be represented as a circularly symmetric cumulative aggregate of 260 

neuronal responses. However, our observations demonstrate that this is not 261 

necessarily the case (Figure 2). Therefore, observation of the pRF topography can 262 

be critical for selecting an appropriate parametric function for a pRF model. This is 263 

an advantage of the pRF topography, and so the topography-based models 264 

outperform the direct-fit isotropic Gaussian models in pRF center modeling, resulting 265 

typically in higher explained variance (Figure 2; see Lee et al.2 for additional 266 
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comparisons with other models). These examples demonstrate the advantage of 267 

estimating the pRF topography prior to fitting the model.    268 

 269 

[Figure 2 here] 270 

 271 

One important requirement is to ensure that the fMRI paradigm used provides good 272 

retinotopy data. Then the pRF topography method can be used to estimate 273 

retinotopic eccentricity and azimuth maps (Figure 3). These maps show similar basic 274 

retinotopic architecture as previous methods1,4-7, but they are more accurate 275 

because observation of the pRF topography allows us to better separate the pRF 276 

center from the surround and from potential noise or artifacts distant to the pRF 277 

center. This, among other things, results in better estimation of the retinotopic maps 278 

at high eccentricities (a detailed account of the observed differences can be found in 279 

Lee et al.2). 280 

 281 

[Figure 3 here] 282 

 283 

The topography-based model (T-model) method can be used to estimate various 284 

pRF properties such as pRF size, elongation, orientation, and surround suppression 285 

efficiently, without having to test many different parametric models. To aid 286 

visualization of such properties, a MATLAB function (tprf_plotpRF.m) is provided that 287 

plots the pRF topography, the corresponding pRF center model, and their fit to the 288 

raw BOLD signal (Figure 4). Note that in some cases, pRF properties may also be 289 

estimated directly from the topography, eliminating the need for pRF modeling. 290 

 291 

[Figure 4 here] 292 

 293 

Figures 294 

 295 

Figure 1. PRF estimation process. (A) Schematic illustration of the process 296 

followed for pRF topography estimation. h(t): hemodynamic response function, A(t): 297 

stimulus, m: pRF, Reg: L2-norm regularization. (B) Specific steps for pRF 298 

topography estimation and pRF center modeling. The set of parameters required for 299 

the estimation is listed in each step. A one-dimensional section of topography and its 300 

model are illustrated. Under “Model Fitting”, black and red curves represent the 301 

topography and its pRF center model with a center threshold of 0.5, respectively. The 302 

blue dashed line indicates a threshold for the pRF central region.   303 

 304 
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Figure 2. Examples of pRF topography estimation and fit of pRF center models. 305 

(A) A typical pRF topography. In the topography, red color indicates the most 306 

responsive area, which shows the pRF center lying on the middle right horizontal 307 

meridian. In the pRF topography, bar patterns across the pRF center structure with 308 

low weights are also sometimes observed. This relates to the fact that the area along 309 

the bar aperture passing through the pRF center is also stimulated simultaneously 310 

with the pRF center. They are easily eliminated in the thresholding step. (B) 311 

Comparison between a previous method (DIG; direct-fit isotropic Gaussian)1 and 312 

topography-based pRF center model (T-model). The corresponding percent of 313 

explained variance is shown above each model. T-models show higher explained 314 

variance in all examples, with more accurate pRF shape capture. See Lee et al.2 for 315 

more details and additional examples.  316 

 317 

Figure 3. Retinotopic maps and pRF size. (A) Eccentricity and Polar angle maps 318 

in the left hemisphere of a subject. CS indicates the calcarine sulcus. In the right 319 

panel of Figure A, the black circle indicates a region-of-interest (ROI) from which the 320 

voxel whose pRF is illustrated in Figure 4 is taken. (B) Relationship between pRF 321 

size and eccentricity. The pRF size increases with eccentricity in visual areas V1-3. 322 

This plot is drawn from (A) 323 

 324 

Figure 4. Demonstration of the MATLAB toolbox developed by the authors. 325 

This plot shows the pRF topography and corresponding pRF model fit of a voxel 326 

selected by a user. The illustrated voxel was selected from the ROI shown in Figure 327 

3A. raw: actual BOLD response, predt: prediction with the pRF topography, predm: 328 

prediction with the pRF center parametric model. 329 

 330 

Discussion 331 

This article demonstrates how to estimate the topography of visual population 332 

receptive fields in human visual cortex and how to use it to select an appropriate 333 

parametric model for the receptive field. For a successful retinotopy, an appropriate 334 

stimulation protocol and an efficient analysis method should be selected, and the 335 

subject’s experimental parameters (motion and fixation) should be optimized. Bar 336 

stimuli moving sequentially across the visual field are an efficient stimulus paradigm 337 

for pRF estimation as it generates distinct BOLD responses from distinct stimulus 338 

locations. The provided method constructs the pRF topography. Since the problem of 339 

pRF estimation is generally under-determined, a mathematical tool called ridge 340 

regression3 is used to enforce the reasonable constraint of sparseness on the pRF 341 

weight solution. This regularization technique is very effective at estimating the pRF 342 
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model when the number of observations (time points of the BOLD signal) is 343 

considerably smaller than the number of pixels covering the spatial dimension of the 344 

stimulus.  345 

 346 

This method provides more robust estimation of the pRF center than previous 347 

methods. There are several reasons for this: 1) it first segments the pRF central 348 

region from the pRF topography and then fits an appropriate model, avoiding 349 

potential biases that may influence pRF model fits in direct models (i.e. surround 350 

suppression or noise artifacts far from the pRF center). 2) Having the ability to 351 

inspect the topography visually gives one the opportunity to validate the performance 352 

of the final model fit uncovering systematic errors, as well as 3) the possibility to 353 

detect features of the pRF structure that may otherwise go undetected. 4) By 354 

constraining the fitting area, this model is less likely to map the pRF inside the border 355 

of stimulus presentation incorrectly compared to direct fit models (see Figure 2B). 356 

Nonetheless, a user need be aware that the proposed method also has limitations 357 

for accurately capturing pRF shape near the stimulus border. This is due to the fact 358 

that near the border the bar stimuli activate partial receptive fields belonging to 359 

voxels whose pRF center would ordinarily be outside the stimulus presentation 360 

region. Any receptive field mapping method would be subject to this problem and 361 

show a relative peak at the border unless it can perfectly extrapolate from the part of 362 

the receptive field center that is mapped to the whole. Having said that, our method 363 

is more accurate than direct-fitting methods1,9, which tend to markedly overestimate 364 

the distance to the center of pRFs that lie near the stimulus presentation border (see 365 

Figures 5 and 6 of Lee et al.2 for more detail). 366 

 367 

 368 

As discussed, to construct a robust pRF topography depends on the free 369 

regularization parameter, λ (Figure 1), which can be optimized separately of 370 

individual voxels, or as a common parameter across all voxels. The regularization 371 

parameter influences pRF topography by adjusting the extent of fitting (over-fitting or 372 

under-fitting) to the data. While a small λ leads to noisy pRF topographies (i.e., over-373 

fitting) compared to the actual pRF, a large λ suppresses visual responses and thus 374 

result in more spread topographies than justified by the actual pRF size (i.e., under-375 

fitting). Selection of the optimal lambda is crucial for successful pRF estimation. We 376 

estimated λ’s in different subsets of data and evaluated these estimates using a 377 

cross-validation strategy. This minimizes biases in pRF topography estimation. 378 

Potential residual biases are further reduced in the pRF center modeling step, where 379 
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different topography thresholds are explored to select one that results in the highest 380 

explained variance (see Lee et al.2).  381 

 382 

Finally, the topography approach proposed is computationally efficient. The 383 

estimation of pRF topographies over all voxels, including finding the optimal 384 

regularization parameter λ takes only a few minutes in a PC environment. 385 

Identifying visually unresponsive voxels at this step excludes them from the more 386 

computationally demanding step of pRF-center modeling, further improving efficiency. 387 

Perhaps more importantly, investigators no longer need to test multiple different pRF 388 

models to find one that fits well, since they can be guided in choosing the 389 

appropriate model by the pRF topography. 390 

 391 

The method demonstrated in this protocol measures population receptive field 392 

topography and uses it to guide population receptive field modeling. This approach 393 

reduces the bias present in direct population receptive field mapping methods, 394 

resulting in more robust and accurate pRF estimates. It also minimizes systematic 395 

errors and allows us to study the functional organization of the visual cortex with 396 

higher sensitivity. It is particularly applicable in the case of subjects with lesions of 397 

the visual pathways, in whom pRF structure may not be easy to anticipate a-priori.  398 

 399 
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